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Abstract

Social robots can be used to tutor children in one-on-one
interactions. Because students have different learning
needs, they consequently require complex, non-scripted
teaching behaviors that adapt to the learning needs of
each child. As a result of this, robot tutors are more
effective given a means of adaptively customizing the
pace and content of a student’s curriculum. In this paper
we propose a reinforcement learning-based approach
that affords such capabilities to a tutoring robot, with the
goals of fostering measurable learning gains and sus-
tained engagement. We outline an architecture in which
the robot uses reinforcement learning to adapt the dif-
ficulty of its exercises. Further, we describe a proposed
study capable of evaluating the effectiveness of our In-
telligent Tutoring System.

Introduction
The 2-Sigma problem refers to the phenomenon that stu-
dents tutored one-on-one perform two standard deviations
better than students learning via conventional classroom in-
struction on average (Bloom 1984). During one-on-one tu-
toring, the tutor can conform to the individual learning style
and preferences of the student. Because the resources re-
quired to provide this tutoring to every student is unreal-
istic, we seek other methods of instruction that will have
comparable effects to one-on-one human tutoring. Intelli-
gent Tutoring Systems (ITSs) are computer systems that can
perform student modeling, provide customized instruction
to learners, and employ a variety of pedagogical strategies
(Graesser, Conley, and Olney 2012).

Additionally, research involving robotic agents as tutors
indicate that the physical presence of a robot tutor can in-
crease cognitive learning gains (Leyzberg et al. 2010). This
motivates the need to investigate robot tutoring systems as an
effective method of instruction. Existing ITS studies show
that there are many aspects of a tutoring interaction that
can be personalized, particularly within finding pedagogi-
cal strategies tailored to students. One strategy is called cur-
riculum sequencing, which deals with the ordering that the
questions are presented in to maximize learning of the stu-
dent (Giannandrea and Sansoni 2013).
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We aim to use a social robot to provide personalized cur-
riculum sequencing in a tutoring interaction with children in
order to foster learning for the child, as well as maintain the
child’s engagement during the interaction.

User Modeling
To understand how social robots may be effectively used as
tutoring agents, we examine existing work in the ITS com-
munity. Here we list some of the main modeling techniques
in ITSs.

Cognitive Tutors: One of the earliest ITS frameworks to
become popular is the family of Cognitive Tutors (CT). This
approach uses the ACT-R cognitive architecture to model
student knowledge (Graesser, Conley, and Olney 2012). This
type of architecture constantly monitors a student to collect
information about the student’s behavior. It employs a pro-
cess termed model tracing to compare a student profile to a
cognitive model to assess whether the student requires help.
While this detailed framework addresses a variety of as-
pects of a tutoring interaction, creating a model incorporat-
ing knowledge components in addition to a detailed model
of the learner’s behavior can be extremely tedious and re-
quire domain experts.

Bayesian Modeling: Many ITSs construct Bayesian Net-
works (BNs) for student modeling as it is a widely used tech-
nique for reasoning under uncertainty in a learning environ-
ment. Some ITSs use this technique to model the state of
the learner, including their behavior and mental state (Conati
et al. 1997). Alternatively, some systems construct a BN to
observe student behavior and assess which rules the learner
has successfully used in a given knowledge domain (Mar-
tin and VanLehn 1995). BNs can also be used to construct
how the learner navigated through a given problem, and can
identify concepts that the learner needs practice with. While
BNs are a viable technique to use, they can often become
extremely complex and difficult to evaluate. There is much
research within this field detailing how the Bayesian net-
works for student modeling can be constructed in addition
to how to choose prior and conditional probabilities for the
model (Gonzalez, Burguillo, and Llamas 2006).

Reinforcement Learning: There has been work done in
using Reinforcement Learning (RL) to model student learn-
ing patterns during a tutoring interaction. RL as part of an
ITS is typically used for the pedagogical model within the
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system, which deals with how the knowledge is presented to
the learner. Some RL tutoring systems focus on presenting
questions such that they maximize a student’s learning (Mal-
pani, Ravindran, and Murthy 2011). RL has also been used
to decide which teaching tactic to use at a given point within
a tutoring interaction (Chi, VanLehn, and Litman 2010). One
advantage to using RL systems in tutoring is that it may not
require tedious encoding of pedagogical rules, as the model
should learn the teaching actions to take based on the stu-
dent’s performance. Because of the large number of training
examples often required for these systems, simulated stu-
dents are sometimes used to generate training data.

Metrics for Intelligent Tutoring Systems
Evaluating the effectiveness of a tutoring agent is not triv-
ial, as each the agent interacts with many different learners,
and each individual interaction can be complex. We list a
few evaluation metrics commonly used in existing tutoring
systems.

• Learning Gains: This metric refers to how much a student
learns during the course of an interaction. This is typically
measured by the difference in pretest and post-test scores
to see how much improvement is made (Graesser et al.
2005). While learning gains are arguably the most impor-
tant desired effect of an ITS, it is difficult to control for
this amongst many participants. Ways to measure learn-
ing gains are often domain specific.

• Time to Complete Problems: ITS systems often attempt to
minimize the average time required for a student to com-
plete problems correctly (Beck, Woolf, and Beal 2000).
While this is straightforward to measure, a low time to
complete problems does not always indicate a successful
tutoring interaction. Students who can complete problems
quickly may be finding the problems unengaging if they
have already mastered the content.

• Time Spent Off Task: Some tutoring systems capture the
amount of time the learner spends off-task from the main
learning task. This deals with user engagement, and as-
sesses how effective the system is in maintaining engage-
ment. This is difficult to measure, as a user’s idle behavior
may correspond to other things as well, such as boredom
or frustration (Sabourin et al. 2011).

Proposed Model
We aim to understand the effects of using a personalized so-
cial robot in a tutoring interaction with children. While RL
has been explored in several computer-based tutoring sys-
tems, little work has been done using RL in robot tutoring
interactions. This provides the motivation to study how a so-
cial robot will attempt to personalize curriculum sequenc-
ing, or a teaching policy dictating the ordering of questions
presented to the learner based on difficulty level. This is an
important piece of a tutoring scenario that lends itself well
to personalization.

We also wish to augment our RL model by further per-
sonalizing the question ordering based on the child’s en-
gagement level in real time. The tradeoff between between

maximing learning gains and sustaining engagement is not
trivial; because we are using an embodied robot, we want to
make use of physical sensors to detect engagement online
during the tutoring interaction. Maximizing both learning
gains and engagement level allows us to explore the tradeoff
between challenge and motivation in a robot tutoring system
for children, as opposed to just having a set of questions with
strictly increasing difficulty ratings.

Model Learning Technique
We propose RL as the method for which the system can learn
a desired presentation order of the questions. We envision an
application scenario in which children are learning how to
solve arithmetic problems.

Let N represent a set containing k questions, of vary-
ing levels of difficulty. Let d be the number of diffi-
culty levels we represent in our set of k questions. Then
we can define D1, ..., Dd sets where Da = {i ∈
N |i has difficulty level a}. Then ∀i ∈ N, ∃a s.t. i ∈
Da, 1 ≤ a ≤ d. We define Q = {q1, ..., qd} as our set of
states. When the system presents question i ∈ Dj to the
learner, the system is in state qj where j is the difficulty
level of question i. We construct transition matrix T contain-
ing the state transition probabilities. These are initialized by
estimating probabilities relating the d difficulty levels. We
represent a policy π as a given order used to present k ques-
tions. An optimal policy π is learned through reward func-
tion R = tpost − tpre where tpre and tpost are the learner’s
scores on a pretest and post-test.

This reward will be used to find a optimal policy during
the training phase. In a later phase, when children are inter-
acting with the social robot, intermittent reward signals that
are determined from real-time engagement detection will be
applied online to the RL algorithm to further optimize the
policy to maximize both overall learning gains and sustained
engagement over the course of the interaction.

Collecting Training Data
In order to collect training data, we will implement this
learning algorithm in a computer-based system and ask par-
ticipants (children) to complete a tutoring exercise. We will
use a pretest and post-test to evaluate the participant’s rela-
tive learning gains, and use this evaluation as the reward for
the policy they are given. Because students often have differ-
ing baseline levels of knowledge, we use the pretest score to
bin each participant into a given category. This category dic-
tates the initial state that the system will start in. Therefore,
policies will be learned by collecting this data, each depen-
dent on the user’s baseline knowledge, reflected in the initial
state chosen by the system. After training, we will have a
transition matrix, which given some initial state s0, can be
used by the system to decide which qj to start in.

By collecting this data through a computer-based interac-
tion, we have the potential to have a larger number of chil-
dren use the system. This is crucial as we will need a large
number of training examples for our model to learn. We de-
fine qc as the most commonly chosen initial state for all the
participants in the training phase.
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Figure 1: DragonBot robot

Estimating Initial State
Each participant is categorized into a given group based on
baseline knowledge level at the start of the interaction. The
group selected for the child dictates the initial state that the
system will start in when presenting questions. Estimating
this initial state is a crucial part of the interaction, as our RL
approach attempts to learn optimal policies specific to the
various groups. This represents the idea that children with
different knowledge levels will require a different curricu-
lum to maximize learning and sustain engagement through
the interaction.

Metrics to Evaluate Model
In our training phase, we use the scores of the pretest and
post-test to estimate learning gains. These scores serve as
the reward signal. In our study involving a social robot with
children, we want to use methods of detecting the child’s en-
gagement as another metric for evaluation. Because we are
using an embodied robot, we can use sensors such as cam-
eras, microphones, and a Kinect to characterize the user’s
engagement throughout the interaction. These types of mea-
sures are important for evaluation of the tutoring interaction.
Learning gains will also be measured, but we aim to create
a robot tutor that both fosters learning and provides a chal-
lenging yet stimulating learning environment for the child.
We have prototyped a simple classifier that detects confusion
based on head tilt and posture changes found in Kinect data.
While the development of the classifier is still in progress,
initial tests of the system indicate that it is feasible to detect
levels of confusion online while a person interacts with a
robot using only a Kinect. We will further develop this sys-
tem to more precisely capture varying levels of engagement
in the tutoring interaction, which will involve detecting con-
fusion, boredom, and distraction.

Proposed Study Utilizing Personalized Model
We propose a study involving a robot tutor using our trained
RL system to decide the ordering of basic questions pre-
sented to a child in a one-on-one tutoring interaction. We
plan to use a DragonBot (see Figure 1), a dragon-like

Figure 2: General procedure for proposed study: group re-
ceiving personalized question order

squash-and-stretch robot with five degrees of freedom that
is well-suited to interact with children (Setapen 2012).

We will randomize children into two groups. One group
will engage in a tutoring interaction in which we estimate the
child’s initial state and the robot presents the question order-
ing based on our learned transition matrix. This ordering is
more personalized to the child’s specific knowledge level.
Additionally, children in this group will receive a question
order that dynamically changes based on their engagement
level. When presenting a question to the student, the model
will look at the learned transition matrix, but will also take
into account the engagement level assessed in real-time. If
the child is detected as distracted or confused, the question
ordering will deviate from the learned model, and will adapt
to simultaneously maximize learning gains and engagement
level throughout the interaction.

The second group represents a control group in which
each child is given questions in the order obtained from
starting in qc, the initial state most commonly selected dur-
ing training. This mimicks the idea that in traditional class-
room instruction, teachers tailor their teaching methods to
the majority of the class, rather than individual students. Ini-
tial state qc is analogous to the baseline knowlege level of
the average student in a classroom setting.

The general procedure for the experiment group given the
personalized policy learned from the RL model is shown in
Figure 2. We will evaluate our system by looking at both
learning gains and engagement level throughout the inter-
action. We hypothesize that both measures will be higher
on average for children in the first experimental group com-
pared to children in the control group. The problem of de-
termining question order based on difficulty level can be
generalized to other learning domains outside of our tutor-
ing scenario. This experiment will allow us to explore how
beneficial it may be to have a social robot demonstrate per-
sonalized behavior in a robot-child tutoring interaction. Ad-
ditonally, it will allow us to gain insight on the tradeoff
between maximizing learning gains and sustaining engage-
ment throughout the tutoring interaction.
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